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What is already known on this topic: Considerable
uncertainty remains regarding the effectiveness of various
covid-19 therapies. Little evidence exists to suggest
hydroxychloroquine is beneficial, with some evidence for
potential harm. For dexamethasone and other glucocor-
ticoids, evidence suggests they may have a mild benefit,
with little evidence of harm. To date, observational studies

have relied upon covariate-adjustment strategies.

What this study adds: Using an alternative to covariate-
adjustment approaches called the stability-controlled
quasi-experiment (SCQE), we examine electronic health
records outside of randomized trials and conclude that (i)
it is difficult to argue for a beneficial effect of hydroxy-
chloroquine, and (ii) dexamethasone is useful under a wide
range of plausible assumptions and it is nearly impossible
for dexamethasone to have had a significantly harmful ef-
fect in this sample. More broadly, the SCQE approach of-
fers a safe and rigorous way to characterize what can be
learned from rapid changes in the use of experimental ther-
apies outside of non-randomized trials, as complements to
randomized trials or where those trials are not forthcoming.

ABSTRACT

Objectives:
chloroquine and dexamethasone on coronavirus disease

To investigate the effectiveness of hydroxy-

(covid-19) mortality using patient data outside of randomized
trials.

Design: Phenotypes derived from electronic health records
were analyzed using the stability-controlled quasi-experiment
(SCQE) to provide a range of possible causal effects of hy-
droxychloroquine and dexamethasone on covid-19 mortality.

CH thanks the California Center for Population Research at UCLA
(CCPR) for support. CCPR receives population research infrastructure fund-
ing (P2C-HD041022) from the Eunice Kennedy Shriver National Institute of
Child Health and Human Development (NICHD). KE was partially supported
by National Institute on Aging (NIA) grant ROIAG054366-05. UCLA IRB
approval #20-000981.

Setting and participants: Data from 2,007 covid-19 positive
patients hospitalized at a large university hospital system
over the course of 200 days and not enrolled in randomized
trials were analyzed using SCQE. For hyrdoxychloro-
quine, we examine a high-use cohort (n=766, days 1 to
43) and a later, low-use cohort (n=548, days 44 to 82).
For dexamethasone, we examine a low-use cohort (n=614,
days 44 to 101) and high-use cohort (n=622, days 102 to 200).

QOutcome measure:
outcome of 28-day mortality.

14-day mortality, with a secondary

Results: Hydroxycholoroquine could only have been sig-
nificantly (< 0.05) beneficial if baseline mortality was at
least 6.4 percentage points (55%) lower among patients
in the later low-use than the earlier high-use cohort. Hy-
droxychloroquine instead proves significantly harmful if
baseline mortality rose from one cohort to the next by just
0.3 percentage points. Dexamethasone significantly reduced
mortality risk if baseline mortality in the later (high-use)
cohort (days 101-200) was higher than, the same as, or up to
1.5 percentage points lower than that in the earlier (low-use)
cohort (days 44-100).
harmful if mortality improved from one cohort to the next
by 6.8 percentage points due to other causes — an assump-

It could only prove significantly

tion implying an unlikely 94% reduction in mortality due to
other causes, leaving an in-hospital mortality rate of just 0.4%.

Conclusions: The assumptions required for a beneficial effect
of hydroxychloroquine on 14 day mortality are difficult to sus-
tain, while the assumptions required for hydroxychloroquine
to be harmful are difficult to reject with confidence. Dexam-
ethasone, by contrast, was beneficial under a wide range of
plausible assumptions, and was only harmful if a nearly im-
possible assumption is met. More broadly, the SCQE provides
a useful tool for making reasoned, limited and credible infer-
ences from non-randomized uses of experimental therapies,
when randomized trials are still ongoing and will take long, or
to provide corroborative evidence from different populations.
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INTRODUCTION

Although randomized controlled trials (RCTs) are the gold
standard for learning causal effects of treatments on outcomes,
running and awaiting the results of RCTs remains challeng-
ing and sometimes infeasible. This is particularly evident in
the case of the SARS-CoV-2 infection that led to the coro-
navirus disease (covid-19) pandemic, where a multitude of
treatments were adopted in the clinic on an urgent basis. It
is particularly in these cases where the ability to draw credi-
ble inferences regarding the effects of treatment used outside
of RCTs is of enormous interest to patients, healthcare work-
ers and researchers. Yet, conventional approaches to such ob-
servational studies have well-known limitations, particularly
their vulnerability to uncontrolled confounding, which can
bias results such that harmful treatments could appear ben-
eficial or vice versa without warning. Physicians and other
expert consumers of medical research are often (rightly) wary
of drawing conclusions about treatment effects — be they null,
beneficial, or harmful — from non-randomized comparisons.
Nevertheless, particularly in emergencies such as the covid-
19 pandemic, healthcare providers often need to make deci-
sions before RCTs have been completed or for individuals not
well represented in those trials. Further, the global response to
covid-19 has seen numerous treatments provided off-label or
through emergency access provisions in parallel with ongoing
RCTs, raising the question of what can credibly be learned
from the experiences of patients receiving these treatments
outside of RCTs.

This study employs the stability controlled quasi-
experiment (SCQE)[1, 2] approach to investigate treatment
effects on covid-19 patients, which differs from conventional
approaches for observational studies in two key ways. First,
unlike standard covariate-adjustment strategies (regression,
matching, weighting, and stratification), SCQE does not rely
on the assumption that there are no unobserved confounders,
i.e. that the treated and untreated groups are comparable af-
ter accounting for observed covariates. Instead, SCQE pro-
duces estimates that depend only on what the user is willing
to assume about the baseline trend, here meaning changes in
the covid-19 mortality rates from one cohort to another that
are not caused by the treatment in question. Second, whereas
conventional approaches present a single estimate and confi-
dence interval that is correct only under the assumption of no
unobserved confounding and no other sources of bias, SCQE
is designed to show the user the entire range of estimates ob-
tained over a plausible range of assumptions about this base-
line trend. These results can be restated to reveal what as-
sumptions about the baseline trend in mortality would have
to be defended in order to argue that the treatment was ben-

eficial, null, or harmful. Such an exercise avoids reliance on
narrow assumptions. Yet, as illustrated here, it can be infor-
mative about the range of plausible effects of a treatment.

Using electronic health records from a university hospital
cohort of over 2007 patients admitted over 200 days, we ap-
ply SCQE to investigate what can be concluded regarding the
impact of hydroxychloroquine and dexamethasone on mortal-
ity in patients with covid-19.

METHODS

Approach and assumptions

To build intuition for the SCQE approach, let us consider
a “natural experiment” that leverages changes in treatment
prevalence over time. Suppose there are two cohorts of pa-
tients. In the first, no patients have access to a given treatment,
and mortality is 20%. In another cohort (e.g., taken from a
later period of time at the same facilities), 50% of patients are
administered a new treatment. They do so not at random, but
based on patient and physician judgement and choice. Sup-
pose the overall mortality rate in the second cohort is 15%.
With an assumption that the two cohorts of patients are com-
parable (i.e. they would have the same average outcomes, ab-
sent treatment differences) we can estimate that being in the
second ("high-use") cohort reduced mortality by 5 percentage
points. Further, since all this benefit comes from the half of
patients who opted to take treatment, the benefit per treated
patient must be twice that (i.e. a 10 percentage point benefit
per treated patient). Note that the required assumption here
regards comparability of the cohorts, and not comparability of
the treated to the untreated within either the first or the second
cohort. This is beneficial as we acknowledge that treatment
decisions can be made in part due to unobservable factors,
making the treated and control groups incomparable regard-
less of efforts to adjust for all measured or observed variables.

Such an approach, however, is limited by the assumption
that the two cohorts would have the same average mortality
rate, absent changes in the treatment. The SCQE takes the
more flexible position of allowing the cohorts to differ in this
regard by variable, postulated degrees. That is, we allow for
some “baseline trend” that describes how differently the co-
horts would have fared on their average outcomes, if not for
changes in the treatment in question. Equivalently, this base-
line trend can be defined as the difference in average outcomes
between cohorts that we would have seen if no patients in ei-
ther cohort had used the treatment. For instance, if treatment
changes (other than the one in question) and/or changes in the
composition of the cohorts would have generated a mortality
rate that was 2 percentage points lower in the later cohort than
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the earlier one, the baseline trend for that analysis would be -2
percentage points.

The key mathematical fact is that in this case, for any as-
sumed baseline trend, we can estimate the treatment effect ex-
perienced by the treated patients, without additional assump-
tions or covariates[1, 2]. For intuition behind this result, we
return to the natural experiment considered above, where no
individual in the first cohort takes the treatment, and hence
the average outcome we observe is the “average non-treatment
outcome”.! Tf we add to this the assumed baseline trend, we
obtain the average non-treatment outcome in the second co-
hort, i.e. the outcome we would expect if we could see how
all individuals in this cohort fared absent the treatment (re-
gardless of whether they actually took the treatment).

Algebraically, this average non-treatment outcome over ev-
erybody in the second cohort is the sum of two terms: (i)
the average non-treatment outcome we observe from the un-
treated patients in this cohort, times the proportion that were
untreated, and (ii) the (unobservable) average non-treatment
outcome that the treated would have had, times the propor-
tion that were treated. Since the average non-treatment out-
come for the treated is the only unknown in this equation, we
can solve for this quantity (see [1] for a complete description
employing mathematical notation). Next, the (observed) av-
erage treatment outcome for the treated minus this average
non-treatment outcome for the treated is the average treat-
ment effect among the treated (ATT). Figure 1 illustrates this
reasoning graphically, using values similar to those from the
dexamethasone study below.

[Figure 1 about here.]

Finally, rather than place our confidence in a single assump-
tion, we “invert” the analysis to reveal the needed assumptions
about the baseline trend in mortality to declare that a given
treatment had a beneficial, null, or harmful effect. Note that
(95%) confidence intervals can be constructed for the effect
estimate at any given choice of the baseline trend assumption,
using the approach described in [2]. We describe an effect as a
significantly or detectably “beneficial” or “harmful” estimated
effect when its 95% confidence interval excludes zero, which
is equivalent to a two-sided p-value at or below 0.05.

While no analysis can determine the true value of the base-
line trend, beliefs about this quantity can be defended or
challenged through auxiliary analyses, such as examining the

'Borrowing from the potential outcomes framework, we can conceptualize

a patient’s outcome both had they taken the treatment (their treatment out-
come) and had they not (their non-treatment outcome), regardless of their
actual treatment status. An "average non-treatment outcome" for a cohort,
then, is the average outcome we would observe had no patients received
treatment.

change in the composition and risk factors of the patients in
the two cohorts and changes in any other documented treat-
ment practices. We consider what baseline trends can be
deemed plausible or implausible in the Discussion below.

While we have described the approach in its simplest form,
several extensions are important, some employed here. First,
we need not have a cohort with zero use of the treatment, just
two cohorts with sufficiently different levels of treatment.’
Second, the two cohorts do not actually need to be cohorts
separated by time; they could be cohorts from separate hos-
pitals, for example. We need only be able to consider how
widely the two cohorts may have differed in their average out-
comes, had treatment levels not differed between the cohorts.
Third, while we employ individual observations for the anal-
ysis and a range of auxiliary variables that are an aid to vali-
dating the approach, the SCQE can be used to estimate effects
where we are only given average outcomes and the proportion
treated in two cohorts.?

Data Collection

Data were extracted from the electronic medical records for
a multicenter hospital system including an academic tertiary
referral hospital. Hospital courses were identified based on a
documented covid-19 infection indicated by either recorded
diagnosis or identification of a positive PCR test for the
SARS-CoV-2 virus. Data were extracted for all persons with
hospitalizations that began between 3/8/2020 and 10/7/2020.
Where patients had multiple hospitalizations within 14 (or 28)
days of the index hospitalization following diagnosis, analysis
included these extra hospitalizations.

Clinical data extracted included demographic factors (age,
sex, race/ethnicity),and body mass index (BMI) at or prior to
the period of hospitalization, baseline laboratory assessments
(white blood cell count, C-reactive protein, ferritin, procalci-
tonin), medication use (remdesivir, convalescent plasma, hy-
droxychloroquine, dexamethasone, prednisone, methylpred-
nisolone, hydrocortisone, and use of proning for assistance
with ventilatory support. We additionally extracted whether
the patient had been admitted by transfer from a skilled nurs-
ing facility, and disposition at discharge.

Use of dexamethasone and hydroxycholoroquine, our treat-
ments of interest, were defined as any use during the hospital
stay(s). Hydroxychloroquine was administered as a standard
5-day course. For Dexamethasone, the prescribed course was
variable in the few cases given in the low-use cohort (days

2This does change the interpretation of effect in terms of the population of
patients to whom it applies; see [2].

3 Analyses using only aggregate data of this kind can be conducted using our
web-based software available at https://amiwulf.shinyapps.io/SCQE_demo/.
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44-101). Its prescription in the high-use cohort became more
standardized as a result of its potential effectiveness [3], typi-
cally administered at 6mg for 10 days.

Cohort Construction

Hydroxychloroquine.
widely used, given to 62% of patients admitted in the first two

Initially, hydroxychloroquine was

weeks. Usage then began to fall steadily, with fewer than 2%
of patients admitted in week 7 or later receiving it. Cohorts
were constructed based on patients’ day of admission. Data
from all days (1 to 200) were first split into two cohorts based
on the split-point that would maximize the strength of rela-
tionship between cohort and probability of receiving hydrox-
ychloroquine, as judged by the F-statistic, which occurred at
day 44. Next, the second cohort was trimmed, to avoid cov-
ering a period in which dexamethasone use rose. Ending the
second cohort on day 82 minimized the difference in propor-
tion of patients receiving dexamethasone in the first and sec-
ond cohorts.When used in either cohort, hydroxychloroquine
was administered as a standard 5-day course.

Dexamethasone. Use of dexamethasone began low and re-
mained at 5% or lower for the first 15 weeks, after which it
steadily rose and peaked near 50% in week 21. Cohort con-
struction proceeded by first choosing the split date that max-
imized the difference between dexamethasone use in the two
cohorts, as judged by the F-statistic, which occurred at day
102. We then trimmed the first cohort to begin on day 44,
ensuring little change in hydroxychloroquine usage between
the cohorts. Dexamethasone use in the first, low-use cohort
was largely unstandardized. The transition to higher use in
the later cohort was driven partly by promising preliminary
trial results [3], after which dosing become more standardized
with most patients receiving 6mg once daily for up to 10 days.

RESULTS

Little evidence supporting beneficial role for
Hydroxychloroquine

The “high-use” (first) cohort included 766 patients admitted
from day 1 to 43, of which 36% used hydroxychloroquine, and
a “low-use” (second) cohort of 548 patients admitted between
days 44 and 82 of which only 2.9% used hydroxychloroquine.
The F-statistic for difference in hydroxychloroquine use be-
tween cohorts was 242.3, p<le-15). Mortality at 14-days was
11.6% in the high-use cohort (89/766) and 8.6% (47/548) in
the low-use cohort, for a raw risk difference (RD) of 3 per-
centage points (t=1.79, p=0.07).

[Figure 2 about here.]

Figure 2 shows the results for hydroxychloroquine. The
vertical axis shows different assumptions regarding the base-
line trend, i.e. mortality shifts absent changes in hydroxy-
chloroquine use. These are shown in terms of the mortality
change going from the low-use to high-use cohorts, and be-
cause the high-use cohort came first and the low-use came
second, a value of 0.02, for example, reflects an improvement
(decrease) over time in mortality by 2 percentage points.

We find that hydroxychloroquine can only be claimed to
have had a benefit if baseline mortality decreased between
the first and second cohort by 6.4 percentage points. In other
words, one must argue there was a 55% reduction in covid-19
mortality among inpatients in this short time, due to factors
other than changes in hydroxychloroquine use. Second, hy-
droxychloroquine is harmful at the p < 0.05 level if baseline
mortality instead worsened over-time by just 0.3 percentage
points (2.6% of the original 11.6% mortality) or more. At
this boundary the point estimate for hydroxychloroquine is
roughly a 10 percentage point increase in mortality. For all
baseline trend assumptions in between these, we would not
reject the null hypothesis of zero effect.

We also consider 28-day mortality for comparability with
existing studies. For hydroxychloroquine to have been sig-
nificantly beneficial would require that baseline mortality im-
proved by 6.8 percentage points, a 47% drop from the first co-
hort’s 28-day mortality of 11.5%. Hydroxychloroquine would
prove harmful at the p < 0.05 level if baseline mortality rose
by 0.7 percentage points.

Probing possible trends.
different baseline trends it is useful to examine possible

In assessing the plausibility of

changes in the composition of the cohorts and in the treat-
ments provided. Table 1 describes these cohorts in terms of
characteristics determined prior to or very shortly after ad-
mission (A), the treatments received (B), and the predicted
risk of mortality according to a range of models (C). As the
purpose of such comparisons is to inform our beliefs about
the plausible range of baseline mortality differences between
the cohorts absent hydroxychloroquine, statistical inferences
regarding the comparisons are irrelevant.

Looking first at patient characteristics prior to or shortly af-
ter admission (A), we see the two cohorts are similar overall,
particularly on known risk factors such as age, gender, weight,
and BMI. The proportion who identify as Hispanic rises some-
what, from 38% to 49%. Taken alone, and given documented
differences in outcomes in Hispanic patients, this would con-
tribute towards an upward shift in baseline mortality risk over
time. Similarly, the fraction of patients coming from skilled
nursing facilities rises somewhat (from 4% to 9%), which
could also increase baseline mortality in the second cohort.
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Table 1 Comparison of hydroxychloroquine cohorts

Cohort means:

A. Characteristics High-use Low- use
age (years) 58 56
over 65 y.o. 36% 33%
female 42% 46%
ethnicity: Hispanic 38% 49%
weight (Lb) 194 187
BMI (kg/m?) 31 32
from skilled nursing facility 4% 9%
ICU in first 24h 18% 15%
CRP (mg/L) 115 108
WBC (per mcL) 7.72 8.63
ferritin (ug/L) 747 601
procalcitonin (ng/mL) 0.89 1.11
B. Other treatments High Use Low Use
remdesivir 3% 11%
tocilizumab 7% 3%
convalescent plasma 5% 22%
proning 3% 4%
dexamethasone 4% 5%
methylprednisolone 10% 7%
prednisone 1% 2%
hydrocortisone 3% 4%
nitazoxanide 1% 0%
C. Modeled risk of 14-day mortality High Use Low Use
linear model (pre-tx) 10.5% 9.8%
linear model (all) 10.9% 9.2%
KRLS model (pre-tx) 10.2% 9.5%
KRLS model (all) 10.4% 9.1%

Note: Comparison of cohorts with high (left) or low (right)
use of hydroxychloroquine, considering (A) various patient
characteristics, (B) other treatments received, and (C)
model-estimated risk of 14-day mortality. Lab measures
(CRP, WBC, ferritin, procalcitonin) refer to the first
measurement taken.

Recall that, because the high use cohort precedes the low use
cohort, potential increases in baseline mortality over time (as
might be caused by these changes) represent negative baseline
trends (i.e. moving downwards on Figure 2), and lead to more
harmful estimated effects of hydroxychloroquine.

On the other hand, two treatment practices (B) that could
have potentially improved mortality increased over time be-
tween these cohorts as well: remdesivir (from 3% to 11%)
and convalescent plasma (from 5% to 22%). Were these treat-

ments to improve mortality, they would encourage us to con-
sider possible improvements in mortality over time, moving
upwards on Figure 2. However, the change in baseline mor-
tality due to these alone would not likely be large given the
low usage rates. Suppose that nearly all of the 11.6% of pa-
tients who would have died in the low-use cohort (based on
the rate in the earlier, high-use cohort) received treatment with
remdesivir and/or convalescent plasma. Suppose these drugs,
in any combination, reduce mortality by 30%. This would
reduce mortality by 3.5 percentage points overall. Assuming
a baseline trend of 3.5 would then be generous, given these
assumptions and that other factors such as ethnicity suggest
mortality change in the opposite direction. Yet, even at an as-
sumed baseline trend of 3.5, hydroxychloroquine would not
prove significantly beneficial.

Finally, these differences in the cohorts are important only
insofar as they suggest different baseline mortality rates. Us-
ing simple linear probability models (C), we can predict 14-
day mortality using only patient characteristics prior to treat-
ment (“Linear model (pre)”), or using those characteristics
plus information on treatments (‘“Linear model (all)”) (see
Supplement for details of all models). The same predictions
can instead be made using a more flexible and powerful ma-
chine learning model, kernel-regularized least squares (KRLS
[4]). These models are reasonably predictive: the linear model
with all variables explains 17% of the variation in mortality;
the KRLS model with all variables explains 52%. Yet, the
overall risk levels in the two cohorts appears similar, as shown
in Table 1. The low-use (second) cohort has slightly lower risk
by 0.7 to 1.7 percentage points. Such model estimates only in-
form the range of plausible baseline trends considered. If we
consider, for example, a 1 percentage point drop in baseline
mortality (a baseline trend represented by .01 on Figure 2),
this corresponds to a non-significantly harmful increased risk
of 6 percentage points (95% CI=[-0.04, 0.16]).

Dexamethasone: plausibly beneficial with very low
risk of harm

In the low-use (first) cohort, 5.7% (35/614) were given dexam-
ethasone, and the 14-day mortality rate was 8.1% (50/614). In
the high-use (second) cohort, 46% (287/622) of patients were
given dexamethasone, and the 14-day mortality rate was 4.0%
(25/622).

In terms of ex ante plausible baseline trends, it would be
difficult to support claims that baseline mortality dropped or
increased by more than perhaps 50% (4.1 percentage points,
either direction). Given the possibility that treatment practices
are otherwise improving over time (e.g. preferences for non-
invasive oxygen supplementation, improved ventilator man-
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agement, or other treatments being attempted), we might ex-
pect some decrease in mortality (a negative trend).

[Figure 3 about here.]

SCQE formalizes the simple logic that while mortality fell
in the higher-use cohort, this only implies a benefit of dexam-
ethasone if mortality would not have improved too greatly “on
its own.” In Figure 3, the vertical axis again represents differ-
ent postulated baseline trends, ie how much higher baseline
mortality is assumed to be in the high-use than in the low-use
cohort. Because the transition from low-use to high-use for
dexamethasone is now the transition from the earlier to later
cohort, positive trends indicate higher (worse) baseline mor-
tality over time.

SCQE finds that we would conclude dexamethasone had a
significant benefit (p < 0.05) if mortality was increasing, flat,
or going down by as much as 1.5 percentage points for reasons
other than dexamethasone use. Unlike the conditions required
for hydroxychloroquine to be beneficial, this window includes
a range of plausible baseline trends. Consequently, we con-
clude there is a reasonable possibility that dexamethasone has
a benefit, though it remains far from defensible with certainty.
This is particularly useful as weighed against the risks: for
dexamethasone to be significantly harmful at the p < 0.05
level, baseline mortality would have to have improved by 6.8
percentage points, which would bring mortality to 1.3%. This
can nearly be ruled out as there is no reason to believe any
changes in the composition of patients or in other treatments
made available could have reduced mortality this dramatically.

Regarding the secondary outcome of 28-day mortality, re-
sults are again similar. Dexamethasone proves statistically
beneficial at the p < 0.05 level so long as mortality rose,
stayed flat, or fell by as much as 2.3 percentage points. Fur-
ther, to prove harmful (at the p < 0.05 level), baseline mor-
tality would have to drop by 8.7 percentage points. Given the
first cohort 28-day mortality rate of 10.9%, this would mean
arguing that mortality was reduced to just 2.2% in the second
cohort for reasons other than dexamethasone use.

Probing possible trends. Table 2 aids reasoning about
possible baseline trends by comparing the high- and low-use
cohorts on numerous characteristics.

Most differences between the cohorts are small and do not
revise the range of baseline trends we can consider plausible.
One worrying exception is remdesivir, with increased usage
(from 12% to 28%) alongside dexamethasone. Remdesivir’s
effectiveness in reducing mortality remains uncertain, with the
ACTT-1 trial[5] showing a benefit on time to recovery, while
preliminary reports from the WHO Solidarity trial[?] show no
significant mortality benefit. Nevertheless we must consider

Table 2 Comparison of dexamethasone cohorts

A. Characteristics High Use Low Use
age (years) 55 55
over 65 y.o. 33% 32%
female 53% 47%
ethnicity: Hispanic 46% 50%
weight (Lb) 195 187
BMI (kg/m?) 32% 32%
from skilled nursing facility 1% 8%
ICU in first 24h 8% 14%
CRP (mg/L) 101 109
WBC (per mcL) 8.24 8.79
ferritin (ug/L) 522 596
procalcitonin (ng/mL) 0.73 1.08
B. Other treatments High Use Low Use
hydroxychloroquine 1% 3%
remdesivir 28% 12%
tocilizumab 2% 3%
convalescent plasma 21% 22%
proning 1% 3%
methylprednisolone 3% 7%
prednisone 0% 2%
hydrocortisone 2% 4%
nitazoxanide 0% 0%
C. Modeled risk of 14-day mortality High Use Low Use
linear model (pre-tx) 5.0% 7.0%
linear model (all) 4.6% 7.3%
KRLS model (pre-tx) 5.0% 6.4%
KRLS model (all) 4.4% 6.8%

Note: Comparison of cohorts with high and low use of
dexamethasone. Lab measures (CRP, WBC, ferritin,
procalcitonin) refer to the first measurement taken.

how this might affect the appropriate range of baseline trends.
Even if remdesivir reduced mortality by 20 percentage points,
then the increase in usage from 12% to 28% would suggest a
drop in the baseline mortality by 3.2 percentage points. If we
took this to be the baseline trend (-0.032), it would suggest a
benefit of dexamethasone that no longer reaches significance
(RD =-0.023, 95% CI=[-.088, .043]).

Looking to models of mortality risk, in every case the pre-
dicted risk of mortality instead fell going into the second
(high-use) cohort, by 1.4-2.7 percentage points. The reduced
risk forecasted by these models is due in part to the reduced
proportion of patients transferred from skilled nursing facili-
ties. If the baseline trend was believed to be approximately a
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two percentage points drop as suggested by these models, the
corresponding effect estimate for dexamethasone would be a
risk difference of -0.05 (95% CI=[-0.12, 0.01]). In summary,
dexamethasone could very plausibly have had either a benefi-
cial or a null effect, while we can nearly rule out that it had a
harmful one.

DISCUSSION

Our study shows what can be inferred about the effects of hy-
droxychloroquine and dexamethasone use on covid-19 mor-
tality using only electronic health records from outside of ran-
domized trials.

Several considerations aid in gauging what baseline trends
are (im)plausible or (im)probable, and hence the conclusions
that can be supported. Studies of overall mortality in other
populations show substantial decreases over time. For ex-
ample [6] show large decreases in mortality in mid-April to
May as compared to March among critical care patients in
England which they argue are not due to changes in patient
demographics. Such results do not generalize easily to our
analysis given differences in the population, time period, out-
comes, and most importantly that these reflect overall mor-
tality inclusive of changes in treatments like dexamethasone,
not the baseline mortality trends we require. In fact, [6] ar-
gue changes in mortality may be partly due to treatments em-
ployed in the RECOVERY trial, such as dexamethasone. Nev-
ertheless there are numerous reasons to expect improvements
in baseline mortality in our sample as well due to changes
in other various treatment practices over time. Though the
cohorts we compared had similar exposure to most therapies
(Tables 1 and 2), changes in treatment practice that remain
unobserved to us could have led to improvements, notably im-
provements in the timing and management of ventilatory sup-
port. Given such possibilities, the reduced mortality seen in
other settings, and the otherwise similar demographics and es-
timated mortality risk in these cohorts, we would judge small
increases in baseline mortality to be unexpected but still possi-
ble, while we judge large increases in baseline mortality—say
by 20% or more—to be extremely unlikely.

It is more difficult to say how large a drop in baseline mor-
tality would be too large to be believed. For many other,
longer-running disease, it might be reasonable to suggest
baseline mortality drops by no more than perhaps 10% in a
matter of months. For covid-19 however, given rapid changes,
a much more generous bound is required. However, given in-
formation about about treatment practices in this health sys-
tem (two of the authors are physicians there), we do not ex-
pect any otherwise undocumented highly effective treatment

was initiated and widely used in this period. While would ar-
gue that a 50% drop in baseline mortality can neither be ruled
out nor defended with certainty, while we regard a drop of
80% or more to be highly improbable.

In the case of hydroxychloroquine, mortality rate decreased
as hydroxychloroquine use decreased. It would be a mis-
take to conclude from this alone that hydroxychloroquine was
harmful, as such an inference depends on how mortality would
have changed anyway, i.e. the baseline trend. For example,
if mortality would have fallen even faster absent the drop in
hydroxychloroquine usage, then the observed data would be
consistent with a benefit of hydroxychloroquine. Specifically,
hydroxychloroquine is demonstrably beneficial only if base-
line mortality would have improved from the earlier to later
cohort by 6.4 percentage points (55%). This is possible, but
we must accept that it is far from confidently defensible, and
certainly not supported by the modeled changes in mortality
risk in these cohorts. Further, against the difficulty of defend-
ing a beneficial effect, one must consider the risk that hydrox-
ychloroquine was harmful. If mortality worsened from one
cohort to the next by even 0.3 percentage points, then hydrox-
ychloroquine must have had a statistically significant harm-
ful effect. Notably, these results are consistent with evidence
from randomized trials testing hydroxychloroquine for early
treatment of mild covid-19 in adults [7], for reduced mor-
tality among hospitalized patients (RECOVERY trial[8]), or
prophylactic protection against infection among exposed par-
ticipants [9], all of which concluded hydroxychloroquine had
null or potentially harmful effects on their varied outcomes
(see Supplement for a review of observational studies).

SCQE shows that dexamethasone was significantly benefi-
cial, if baseline mortality was increasing over time between
cohorts, stayed flat, or fell by up to 22% (1.5 percentage
points). Such baseline trends are far from certain, but are cer-
tainly plausible and would not be ruled out. This potential
benefit is weighed against the risk of harm. Here the results
are rather definitive: statistically significant evidence of harm
requires that baseline mortality improved between cohorts by
at least 6.8 percentage points, which amounts to an 84% or
a baseline mortality of just 1.3% in the later cohort. We re-
gard as highly unlikely given the small differences between
the cohorts and our belief that no undocumented but highly ef-
fective treatment had been discovered and widely used in the
second cohort. Our results are consistent with, though more
reserved than, conclusions drawn from the CoDEX trial[10]
showing increased days alive without mechanical ventilation
and the RECOVERY trial [3] showing lower mortality, specif-
ically for those under mechanical ventilation or with oxygen
supplementation at randomization.
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Limitations

The central limitation of this study and approach is also its
strength: that it avoids providing a narrow claim, because it
avoids reliance upon a point assumption that is unlikely to be
defensible. This may remain unsatisfying for many readers
accustomed to more specific claims, though it serves to trans-
parently communicate what can be claimed subject to what
assumption, leaving the reader to argue positively for the as-
sumptions that would be required to reach a conclusion and
illustrating the limits of our knowledge.

Another limitation, specific to this study, regards sample
size. The sample is larger than those in some randomized tri-
als, and more than sufficient for SCQE. The downside of the
modest sample size, however, is that the estimate effect has
to be relatively large (roughly 10 percentage points or more)
for the 95% CI to exclude zero. This in turn means that our
conclusions will be less decisive over a given plausible range
of baseline trends than they may have been with similar esti-
mates but a larger sample. We note that a variant of the SCQE
approach used here can be used to re-analyze observational
studies, many of which are much larger, as demonstrated for
existing studies of hydroxychloroquine in the Supplement.

Finally, in both of the studies, the cohorts we defined were
largely similar in their composition and use of other treat-
ments, which is not necessary but makes it far easier to rea-
son about plausible bounds on the baseline mortality differ-
ence between cohorts. That said, differences in the use of
remdesivir remain non-trivial in both cases, with convalescent
plasma use also changing in the hydroxychloroquine study.
We have discussed the degree to which these could influence
the baseline mortality difference, and what this means for our
estimates. Yet, the existence of these changes is a nuisance
that widens the range of plausible estimates and thus reduces
the chances of a more decisive conclusion being reached. A
promising option suitable in some contexts for future research
would be a “design-based” version of the SCQE in which
hospitals plan to make a new treatment available, again by
choice rather than as part of an RCT, while intentionally lim-
iting other changes in practice or patient composition over a
period of time around this transition. To the degree this is
feasible it can buoy arguments for baseline trends or smaller
magnitude, resulting in a narrower range of plausible effect
estimates preserving the ability to offer patients and doctors
choice in treatment.

Conclusions

Our results are largely consistent with those of existing trials
on hydroxychloroquine and dexamethasone, despite examin-

ing outcomes for patients outside of randomized trials using
only electronic health records. This study provides not only
corroborative evidence from other populations regarding these
treatments, but also a useful and accessible application of the
SCQE approach to aid adoption.

More broadly, as observational studies are likely to remain
part of the research landscape, the use of SCQE can offer
a valuable, rigorous way to understand what can be safely
learned from patient experiences with non-randomized treat-
ments. SCQE estimates may be particularly useful prior to the
availability of data from randomized trials, or in domains such
as quality-improvement studies in which randomized trials are
not always performed. This approach can also complement
randomized trials, as evident here, by offering corroborating
evidence and assessing efficacy in a population that will often
differ from those enrolled in trials.

We endorse the argument that even—or especially—in mo-
ments of urgency such as a pandemic, every effort should be
made to launch and complete coordinated, well-designed ran-
domized trials [11]. Nevertheless, there remains an important
role for credible observational studies that avoid risks of pro-
ducing misleadingly confident results built on fragile assump-
tions.

Numerous opportunities remain to apply this approach to
covid-19 therapeutics in development, including convales-
cent plasma, monoclonal antibodies, and additional antivirals
and anti-inflammatory agents currently being used experimen-
tally. At a time when ongoing randomized trials often coexist
with parallel access to experimental therapies under expanded
access provisions, the reduced uptake of randomized trials
may additionally increase the importance of methodological
frameworks such as SCQE to evaluate observational data.
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Figure 1 Understanding the SCQE
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*Note: Each ball represents a group, and the height represents that group’s average outcome. Starting on the left, in the no-use
cohort we observe the average mortality (§8%) under non-treatment. We then impose an assumption regarding how the
non-treatment outcome would have changed from one cohort to the next. Here this is a 2 percentage point drop, meaning the
average non-treatment outcome over the entire high-use cohort, is assumed to be 6% (b). Because the value of (b) is weighted
some of the non-treatment outcome for those who were not-treated and those who were treated, we can solve algebraically for
the average non-treatment outcome that would have been experienced by the treated (d). Comparing the actual average
(treatment) outcome for the treated (e) to this imputed average non-treatment outcome for the treated (d) produces the average
treatment effect for the treated. No assumption regarding the comparability of the treated and control (c and e) is made, only an
assumption on the trend in the average non-treatment outcome.
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Figure 2 SCQE Estimates of risk difference for hydroxychloroquine
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*Note: The vertical axis indicates an assumption about the baseline trend in mortality, i.e. how mortality is postulated to have
changed going from the low-use to high-use cohorts, for reasons other than changes in hydroxychloroquine use. Because the
high-use cohort is the earlier one here, positive values (towards the top of the figure) correspond to falling mortality in the
direction of time. At each postulated mortality trend, we see the consequent effect estimate and its 95% confidence interval.
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Figure 3 SCQE Estimates of risk difference for dexamethasone
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*Note: The vertical axis indicates an assumption about the baseline trend in mortality, i.e. how mortality is postulated to have
changed going from the low-use to high-use cohorts, for reasons other than changes in dexamethasone use. Because the
high-use cohort is now the earlier one, positive values (towards the top of the figure) correspond to increases in mortality over
time. At each postulated mortality trend, we see the consequent effect estimate and its 95% confidence interval.
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